发表时间: 2022-09-30 10:05:16
作者: 聚图半导体(苏州)有限公司
浏览:
利用微纳光纤操作简单、 倏逝波耦合等特性,目前研究者们成功研制出多种基于微纳光纤的谐振腔。(光刻加工)根据谐振腔结构大致可分为 三类 : 圈型谐 振腔(loopresonators)、结型谐振腔(knot resonators)和卷型 谐振腔(coil resonators)。 Sumetsky 等首先报道了将微纳光纤绕圈形成谐振腔的方法:将微纳光纤两端通过拉锥端与单模光纤相连,借助光学显微镜操作形成圈型结构。微纳光纤圈型谐振腔的耦合区依靠静电力、范德瓦尔力和摩擦力相互作用维持,谐振腔的自由光谱区取决于微纳光纤圈的大小,谐振峰的形状则与耦合系数有关,通过微调节光纤圈尺寸从而改变谐振腔的自由光谱区和谐振峰形状 。
微纳光纤具有以下良好光学传输特性——苏州微纳代工厂家小编来为大家娓娓道来:
1.强光场约束:
微纳光纤的强光场约束能力较好,同时光束在微纳光纤中传输时的等效模场截面的尺寸与波长除以光纤折射率为同一个量级。这样的特性使得微纳光纤的低损耗弯曲半径通常只有微米量级,因此在小型化器件以及高密度、短距光互联等应用方面有独特的优势。除此之外,在亚波长范围内对光场的强力限制会极大地改变微纳米纤维表面上光子态的密度,并调节自发发射或量子态的概率。
2.强倏逝场:
微纳米纤维的极低表面粗糙度可以支持倏逝场的大多数低损耗传输。这有助于改善微纳米纤维与其他结构之间的近场光学耦合,并有助于提高微纳米纤维传感器的灵敏度。并且高度受限的强倏逝场在微纳米纤维的表面上创建了具有大梯度的空间光场,从而产生了用于操纵冷原子或纳米粒子的大光学梯度力。
3.小质量:
极低质量的微纳米纤维可用于灵敏地检测透射光子脉冲的变化,并实现光子和声子的有效耦合或转换。
编辑:MEMS加工 http://www.szjtnano.com/